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The finite difference integration methods of Rusanov, Lax-Wendroff, Rubin and Burstein, 
MacCormack, Hyman, the Flux-Corrected Transport (FCT)-SHASTA Phoenical, the FCT- 
SHASTA Phoenical Low Phase Error schemes of Boris and Book, the Hybrid scheme of Har- 
ten and Zwas, and the Artificial Compression Method of Harten are tested. These methods 
are utilized to solve the nonlinear hyperbolic equations describing propagation of finite 
amplitude waves, wave steepening, and shock formation and propagation in a closed-end tube 
for many wave cycles. The resulting pressure oscillation data is spectrally analyzed. For 
“traditional” second-order, nonmonotonic schemes, it is shown that the factors which cause 
the initial post-shock “wiggles” eventually lead to the generation of highly erroneous 
solutions. Two modified second-order schemes, FCT-SHASTA and a combination of the Lax- 
Wendroff, Hybrid, and Artificial Compression schemes, produced the best shock resolution 
and harmonic content. Finally, it is shown that the FCT schemes yield erroneous solutions at 
high wave amplitudes. 0 1985 Academic Press, Inc. 

INTRODUCTION 

This paper presents the results of an investigation to select a satisfactory finite 
ciifference integration scheme for solving the one-dimensional, Eulerian form of the 
equations describing the propagation of steep-fronted, shock-like waveforms in 
variable cross-sectional area ducts and two-phase solid rocket combustion cham- 
bers [ 11. The suitability of candidate finite difference integration schemes for the 
intended purpose was tested by applying them to a similar but simpler problem: 
that of finite amplitude shock-like wave propagation in a closed-end tube. The 
equations describing the flow of gas in the tube are identical to those describing the 
flow in a uniform cross-sectional area rocket motor-after deleting terms con- 
tributed by the presence of particles in the flow and terms describing the addition of 
mass, momentum, and energy by the combustion processes. 

In order to be acceptable for the intended application, a finite difference 
integration technique must preserve the high frequency content of the waveforms, 
be relatively nondissipative and nondispersive after many wave cycles, be capable of 
describing a shock wave as a sharp discontinuity, and be capable of properly 
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treating the reflection of shock waves from boundaries and the partial reflection and 
transmission at area discontinuities. Moreover, the test case under consideration 
involves wave steepening from an initially sinusoidal waveform to a shock wave 
and, due to entropy generation by repetitive shock wave processing of the gases in 
the chamber, the possible return to a sinusoidal waveform after many wave cycles. 
Thus, it is required that the numerical scheme have minimum diffusive and disper- 
sive errors for both shock wave and harmonic standing wave propagation for many 
wave cycles. It should also be pointed out that in solving a combustion instability 
problem, numerically induced pre- and post-shock “wiggles” do not just impair the 
accuracy of the solution; they can lead to nonphysical solutions by erroneously 
“triggering” nonlinear combustion instabilities. 

A shock wave is described mathematically as a surface of discontinuity with a 
smooth solution on either side of the shock. The shock solution is governed by 
jump conditions across the discontinuity. Since the assumption that the solution is 
smooth is inherent to all standard convergence theorems for numerical schemes, it 
is possible [Z] to construct a solution with the wrong speed of propagation. One 
option to avoid this problem is to use shock-fitting schemes [3, 4, 51 that threat 
the shock as an internal boundary and calculate values across the discontinuity 
utilizing the Rankine-Hugeniot relations. However, this approach is impractical for 
the intended application (variable area chambers with discontinuous area changes) 
due to the large number of shock waves, rarefaction waves, and contact surface dis- 
continuities that are created by internal reflections and intersections. Similarly, 
finite difference schemes that are modeled after and exploit the mathematical theory 
of the method of characteristics, methods such as the L scheme [6], the split coef- 
ficient scheme [7], or the pseudo-characteristics scheme [8], are impractical for 
this specific test problem. Implicit shock capturing schemes offer no particular 
advantage since the physical problem of interest typically requires time resolution 
consistent with the stability restrictions of explicit methods. 

An alternative to shock fitting is shock capturing. Methods that capture the 
shock do so by integrating the governing equations across the shock. The capturing 
approach to the calculation of discontinuous solutions has two essential defects. (1) 
A discontinuity in the solution of a partial differential equation is approximated by 
the solution of a finite difference scheme which is a continuous transition con- 
necting the states on both sides. It has been shown [9] that when the order of 
accuracy of the numerical scheme is greater than unity, the transition will produce 
overshoots or undershoots upon crossing the discontinuity. These oscillations (ter- 
med wiggles) can induce nonlinear instabilities when coupled with the combustion 
processes, damage the accuracy of and spuriously alter the harmonic content of the 
numerical solution, trigger convergence to nonphysical solutions that violate the 
entropy condition [lo], or generate nonphysical rarefraction shocks [ll]. (2) 
When approximating a contact discontinuity by a continuous transition, the width 
of the transition grows with time as n”(l+R), where n is the number of time steps 
and R is the order of accuracy of the finite difference scheme. Thus, in order to 
maintain accuracy in the neighborhood of a contact discontinuity, a liner mesh 
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than would otherwise be necessary is required. This can significantly increase the 
computational time, especially in multi-dimensional calculations. 

The standard cure for the first problem (wiggles) has traditionally been the 
addition of artificial viscosity terms to the differential equations. Several types of 
artificial viscosity methods capable of suppressing post-shock oscillations have been 
developed [9, 121. However, such artificially induced diffusion also smears out the 
discontinuities and dissipates energy contained in the high frequency modes that are 
part of the physical solution. Moreover, the rate of energy dissipation produced by 
artificial viscosity can be comparable in magnitude to the net rate of energy gains 
or losses in many combustion systems. In addition, the use of artificial viscosity 
precludes any efforts to determine the actual particulate related energy damping 
rate in two-phase flow systems. 

As a result of the drawbacks of artificial viscosity methods, numerous 
investigators have sought to develop other alternatives for suppressing pre- and 
post-shock oscillations. It has been shown [lo] that first-order monotone schemes 
yield the proper shock location and do not generate wiggles upon integrating across 
a discontinuity. Unfortunately, due to their first-order accuracy, such schemes are 
highly dissipative and excessively smear and damp discontinuities. An alternative to 
utilizing a monotone scheme everywhere is to use it only near a discontinuity while 
using a higher order scheme wherever the solution is smooth. The hybrid scheme of 
Harten and Zwas [ 133 is an example of such a method. Other techniques use the 
second-order scheme (without artificial viscosity) everywhere and then remove the 
oscillations by utilizing a Shuman filter [14] or enforce monotonicity on second- 
and third-order schemes, as done by Van Leer [15]. 

Several methods were developed recently to deal with the smearing of the contact 
discontinuity. These methods include Chorin’s implementation of Glimm’s method 
[ 163, the Flux Corrected Transport (FCT)-SHASTA Phoenical method of Book, 
Boris, and Hain [ 173, the Low Phase Error Flux Corrected Transport (FCT)- 
SHASTA Phoenical schemes of Boris and Book [18], and the Artificial Com- 
pression Method (ACM) of Harten [ 191. Another recently developed scheme [20] 
is a combination scheme consisting of the Artificial Compression Method (ACM), 
combined with the Hybrid scheme [13] and the basic second-order scheme of Lax 
and Wendroff [21] (this combination scheme is termed LW + H + ACM). These 
schemes were combined to yield oscillation-free, sharp transitions of discontinuities 
while maintaining a high order of truncation error wherever the solution is smooth. 

A starting point in the selection of the best available numerical scheme for this 
test case was an excellent review paper by Sod [22]. Sod tested several numerical 
schemes for the shock tube test case. His results demonstrated the superiority of the 
“advanced” methods such as the FCT or ACM schemes, over the “basic” second- 
order schemes of Lax and Wendroff or MacCormack. It had been shown that the 
“basic” schemes generated spurious wiggles upon crossing the discontinuity. 
Nevertheless, it has been noted by Turkel [23] ( in another excellent review report) 
that “it is not clear whether one needs to remove these oscillations except for 
aesthetic reasons. This seems to be problem dependent. For problems with com- 
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bustion, it is imperative to prevent oscillations which falsely trigger the combustion 
process... for dynamic situations, the situation is not clear.” The objective of this 
research work is to clarify this situation complementing Sod’s work and testing the 
candidate finite difference integration schemes for problems describing shock wave 
propagation over long periods of time (as compared to 20 to 30 time steps as done 
by Sod), i.e., to determine whether initial wiggles are just an aesthetic imperfection, 
or if they yield physically erroneous solutions. 

The random choice method of Glimm, implemented by Chorin [16], has been 
viewed as too difficult to implement as it necessitates the evaluation of the location 
of a sample point with respect to the slip line, shocks, and rarefaction waves (eight 
options altogether). This poses an extremely difficult problem, especially when there 
are several shocks and rarefaction waves traveling and interacting inside a variable 
area closed-end chamber (or a combustion chamber) for many wave cycles. 
Furthermore, additional developments and applications of this scheme utilizing 
random sampling or Van der Corput sampling [24] indicated that though the 
shock itself is captured over two or three grid points, the location of the shock is 
often wrong. An hybridization of Glimm’s method with Godunov’s method [25], 
where Godunov’s method [26] is utilized at the vicinity of the discontinuity, 
resulted in the right location of the shock. However, the shock resolution can be 
only as good as obtained by Godunov’s method, and hence, the shock discontinuity 
is captured over four to live grid points. 

The results (either reported in the original papers, Sod’s paper, or results of tests 
conducted by us) for the shock tube problem, utilizing the upwind second-order dif- 
ference scheme [27], or implicit variations of this scheme combined with central 
spatial differencing, or alternating explicit upwind [28] combined with MacCor- 
mack schemes [29] indicated that these schemes cannot yield results that are as 
good as those obtained by the FCT or the ACM type schemes for this test case. For 
the same reasons, the pseudo-characteristic method of Carver [S], the 1 scheme of 
Moretti [6], the split coefficient scheme [7], and the upstream-centered finite dif- 
ference schemes of Van Leer [30], were not tested. Van Leer’s second-order sequel 
method to Godunov’s [31] is a Lagrangian scheme that was considered unduly 
complicated for practical applications, especially in view of the results presented for 
the shock tube problem, results that are good, but no better than the much simpler 
FCT or ACM schemes. 

The numerical schemes evaluated using the current test problem of finite 
amplitude wave propagation ‘in a closed-end tube were the first-order scheme of 
Rusanov [32]; Rusanov’s method combined with artificial compression; the “stan- 
dard” second-order schemes of Lax and Wendroff [21], Rubin and Bustein [33], 
and MacCormack [28]; the hybrid scheme of Harten and Zwas [13]; the Flux 
Corrected Transport (FCT)-SHASTA Phoenical of Book, Boris, and Hain [ 171; 
the FCT-SHASTA Phoenical Low Phase Error (LPE) of Boris and Book [18]; 
Hyman’s predictor-corrector [22]; and Harten’s combination of the Artificial 
Compression Method (ACM), Hybrid, and Lax-Wendroff schemes [20]. 

In order to facilitate the evalution of the diffusive and dispersive errors of the dif- 
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ferent numerical schemes tested, the results of the test problems were spectrally 
analyzed. Since the pressure-time history calculated at any location along the tube 
is similar to the pressure-time data that would have been measured by a pressure 
transducer located at that spatial location in an actual test, an existing spectral 
analysis capability was utilized. This program was originally developed to perform 
a spectral analysis of the data measured by a pressure transducer attached to a 
solid rocket motor case during motor firing. The accuracy of the spectral analysis 
program is within + 2 %. 

WAVE PROPAGATION IN A CLOSED TUBE 

Basic Equations 

The one-dimensional, unsteady, inviscid, Eulerian form of the nonlinear hyper- 
bolic equations of gas dynamics can be written in conservation form as 

(1) (continuity) aP w4=o 
at+- 8X 

(momentum) aPu J(P+PU2)=0 
at+ 

(energy ) ; ,p(<+;),+-& ,p(y+g),=O (3) 

(2) 

where a is the sound speed, cP is the specific heat of the gas at constant pressure p, 
T is temperature, u is velocity, y is the gas isentropic exponent, and p is the density. 

Equations (1) through (3) may be written in a vector form as 

where 

F= 

F, + G(F), = 0 

P 

G= (4) 

Boundary Conditions 

The boundary conditions at both ends of the closed tube are those of a rigid wall, 
i.e., u = 0. The method of characteristics was utilized to obtain solutions at the 
boundary points. 

Currently, a simple Euler integration along the characteristics is used. 
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Initial Conditions 

The geometry and unperturbed conditions for the test problems were as follows: 
tube length 1.22 meter (48 inches), pressure 1000 psi, temperature 6279” R, y = 1.22. 
The transient solution was initiated by perturbing the steady state with a first 
longitudinal standing wave disturbance (corresponding to a frequency of 526 Hz) 
having an amplitude of 20 % of the mean pressure. The initial perturbed density 
and temperature were calculated using isentropic relations while the velocity 
remained unchanged. The chamber is divided into 50 equally space intervals using 
51 grid points. All the schemes were tested at a Courant number (C,) equal to 0.6. 
This number was chosen for three reasons. (1) Owing to the large variation of the 
mean flow inside a rocket motor (as in most flow systems), one has to deal with 
areas of different velocities and, hence, different Courant Numbers (typically vary- 
ing from 0.3 to close to one). (2) Since each numerical scheme has a Courant num- 
ber at which the results are best, operating at that Courant number would favor 
that specific scheme. Operating at C, = 0.6 seems to be a fair region with respect to 
all schemes. (3) Sometimes it is necessary to choose a smaller computational mesh 
in certain parts of the system having large gradients (as happens in nozzles, for 
example) and thus forcing the utilization of a low Courant number in regions of 
large grid steps. A testing at C, = 0.6, a value in the middle of the expected 
operating range, enables a better evaluation of the schemes at C, other than the one 
most suitable for the specific scheme used. Other solutions were obtained at higher 
and lower Courant numbers to confirm that the conclusions regarding the relative 
merits of each scheme are valid in general. Whenever the results obtained at dif- 
ferent Courant numbers differed significantly from those obtained at C, = 0.6, they 
are presented and discussed. 

Exact Solution 

An analysis of finite amplitude sound wave propagation in an unbounded 
medium, neglecting the effects of viscosity and heat transfer, is described in [34]. 
Since the speed of propagation is dependent upon the pressure, different portions of 

TIME 

FIG. 1. Repeated shocked sound wave. 
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the wave will travel with different speeds, resulting in wave steepening. It is shown 
that a finite amplitude waveform will reach a stable sawtooth-like shape, referred to 
as a shocked sound wave or a repeated shock wave, as shown in Fig. 1. Once the 
waveform reached this sawtooth-like shape, effects of entropy production in the 
fluid due to passage of the shocked wave (when neglecting the effects of viscosity 
and heat transfer) will attenuate the shocked sound wave, but its shape will not be 
distorted. Nevertheless, when the amplitude reaches a very low level such that non- 
linear wave steepening effects are more than checked by diffusion, the sound wave 
can no longer maintain its shocked state and will eventually reduce to an harmonic 
waveform. A spectral analysis of the sawtooth-like waveform (done by Fourier 
series representation of the wave) indicates that energy contained in the higher 
modes falls as l/n2 with respect to the energy contained in the fundamental mode 
(where n is the mode number). The calculated (based on the exact analysis) 
amplitude decay rate corresponds very closely to those calculated utilizing the FCT 
or ACM schemes (which will be shown later). 

Results 

Figure 2a shows the time evolution of pressure oscillations at an end of the tube, 
obtained by utilizing MacCormack’s method. Wave steepening, shock formation, 
and shock amplitude decay with time are evident in this figure. Expanded views of 
the pressure oscillations at an end of the tube between nondimensional times of 0 to 
10, 20 to 25, and 50 to 55 are shown in Figs. 2b-4 respectively. The appearance of 
wiggles after the wave steepens is shown in Fig. 2b. The time evolution of these 
wiggles into discrete humps in the waveform is shown in Figs. 2c and 2d. The 
absence of the higher harmonics is indicated by the discrete humps in the waveform. 
These figures demonstrate that wiggles are not just a distracting aesthetic 
phenomenon, but given enough time, develop into an erroneous solution. It should 
be noticed that the number of discrete humps reduces with time. 

Figures 2e through 2g show the time evolution of power spectral density as a 
function of frequency. It is shown that at the nondimensional time interval of 10 to 
20 there is an erroneous amount of energy in the eighth to tenth harmonics. At a 
later time interval (nondimensional time 20-30), the location of this erroneous 
energy reaches the sixth to eighth harmonics and finally (nondimensional time 
5&60) reaches the fourth to sixth harmonics. The energy in modes higher than the 
one at which erroneous energy is located vanished rapidly due to excessive 
numerical dissipation. The pressure solution with a number of discrete humps is 
similar to classical solutions obtained by utilizing a truncated Fourier series 
representation. 

Figure 2h shows the time evolution of accumulative power spectral density 
(PSD) as a function of mode number for this test case. It is shown that the 
erroneous high energy is moving from higher to lower modes with time and that the 
percentage of energy in the fundamental mode goes down with time. This con- 
stitutes a numerical error since energy transfer among modes happens only as the 
shock is formed, when energy is transferred from the fundamental mode to higher 
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FIG. 2. (a) Time evolution of normalized pressure oscillations at an end of the chamber (MacCor- 
mack). (b)-(d) Expanded view of the normalized pressure oscillations at an end of the chamber (Mac- 
Cormack). (eb(g) Time evolution of power spectral density as a function of frequence (MacCormack). 
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FIG. 2. (h) Time evolution of accumulated power spectral density as a function of mode number 
(MacCormack). (i)-(j) PSD as a function of frequency (MacCormack): (i) C, =0.98, (j) C, = 0.3. 

modes due to wave steepening. Once the shock is formed, no further waveform 
changes or energy transfer between modes should occur. Moreover, there are no 
known physical processes present in the system that can cause a transition of 
energy from a higher mode to a lower mode. Thus, the observed energy transfer 
from higher to lower modes is a numerically induced phenomena that relates to the 
truncation error. The time variation of the accumulative power spectrum results 
from the combination of dissipative and dispersive errors of the numerical scheme, 
where the dispersive errors cause pressure signals to travel at the wrong speed, 
while the dissipative error causes over-attenuation of the high frequency modes. 

To examine the effect of Courant number on the dissipative and dispersive errors 
of the MacCormack scheme, the test case was repeated at several Courant numbers 
ranging from a high of C, = 0.98 to a low of C, = 0.2. Spectral analysis of the results 
obtained with C, = 0.98 indicates that the initial erroneous energy is contained in 
the 15th and 16th harmonics. At the nondimensional time interval of 50 to 60, the 
erroneous energy is contained in the 7th to 9th harmonics, each containing more 
energy than the fundamental mode itself (as shown in Fig. 2i). Results obtained 
with C, = 0.3 indicate that the initial error appears in the 7th to 9th harmonics; at 
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FIG. 3. (h) Time evolution of accumulated PSD as a function of mode number (Lax and Wen- 
droff). (ib(j) Time evolution of normalized pressure oscillations at an end of the chamber, C, = 0.98 
(Lax and Wendroff). 

the nondimensional time of 50 to 60, the 4th harmonic contains significantly more 
energy than the fundamental mode (as shown in Fig. 2j). In this connection it 
should be mentioned that decrease in Courant number results in more high har- 
monic energy dissipation. Examination of the amplitude of the last computed 
waveform (nondimensional time 58 to 60) indicates that the maximum goes down 
with Courant number from a value of 13 % of the mean pressure with C, = 0.98, 
11 % at C, = 0.8, to 9 % at C, = 0.8. The maximum amplitude value then goes up 
as Courant number dec!;ases, to a value of 11 % at C, = 0.6 and 13 % at C, = 0.2. 

A linear analysis of the dispersive and dissipative errors of the MacCormack 
scheme as a function of Courant number was conducted in [27]. It has been shown 
that for all Courant numbers, both the dispersive and dissipative errors (per time 
step) increase with frequency. Dissipative errors increase with increase of Courant 
number from 0.1 to about 0.6 and then decrease. Dispersive errors decrease with 
increase of Courant Number. These results, although obtained by linear analysis, 
are in agreement with the results obtained for this nonlinear test case. 

The results obtained utilizing the classical second-order scheme of Lax and Wen- 
droff are shown in Fig. 3a-j. Figure 3a shows the time evolution of pressure 
oscillations at an end of the chamber. Expanded views between nondimensional 
time intervals of 0 to 10, 20 to 25, and 50 to 55 are shown in Figs 3b, c, and d, 
respectively. It is shown that the initial post-shock oscillations develop in time into 
a number of discrete humps. The number of humps goes down with time until, at 
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nondimensional time of 60, there are only four humps. The spectral analysis, shown 
in Figs. 3e, f, and g for the nondimensional times of 10-20, 3&40, and 5&60, 
respectively, clearly demonstrates the erroneous transfer of energy. Initially, there is 
excessive energy at the tenth and eleventh harmonics. This energy propagates 
towards the lower harmonics until, at the end of the solution, it is shown that there 
is a significant amount of excessive (erroneous) energy in the fourth to sixth har- 
monics. It should be noticed that initially 99 % of the total energy is contained in 
the first fifteen harmonics. Towards the end of the solution, however, that same per- 
centage of energy is contained in the first seven harmonics, while the energy con- 
tained in the harmonics above the eighth has been totally dissipated. Figure 3h, 
which portrays the time variation of the accumulative PSD as a function of the 
respective harmonics, clearly demonstrates the erroneous energy transfer and the 
dissipation of energy in the higher harmonics. 

An investigation was conducted to examine the effect of variations of Courant 
number upon the dispersive and dissipative errors of the Lax-Wendroff scheme. 
Figures 3i and 3j show the time evolution of pressure oscillations between the non- 
dimensional time intervals of 0 to 10 and 50 to 60, respectively, obtained with 
C, = 0.98. Except for a single overshoot, the solution is almost perfect, as indicated 
by both the pressure data and the spectral analysis results. 

Wiggles appear in the solutions at Courant numbers lower than 0.9. As Courant 
number is reduced, the location of the erroneous energy shifts to a lower harmonic. 
Thus, for instance, at the nondimensional time interval 50 to 60, the erroneous 
energy is located at the sixth and seventh harmonics with C, = 0.8, fourth and fifth 
harmonics with c, = 0.6, fourth harmonic with C, = 0.4 (about the same energy in 
the fundamental and the fourth harmonics), third and fourth harmonics with 
C, = 0.2 (with significantly more energy in the fourth harmonic than in the fun- 
damental mode), and third harmonic with C, = 0.1 (with equal amounts of energy 
in the first and second harmonics and significantly more energy in the third har- 
monic). It should be noticed that the amplitude of the last computed waveform 
(nondimensional time 58 to 60) changes very little with Courant number, in con- 
trast to the results obtained with MacCormack’s scheme. 

The results obtained utilizing the Lax-Wendroff and Rubin and Burstein schemes 
are, as expected, very similar. Moreover, the results obtaind by these schemes are 
similar to the results obtained by utilizing MacCormack’s scheme. A comparison of 
the results indicates that (1) the first post-shock wiggle appears after the third wave 
cycle (LW and RB) when the wave is fully shocked, compared to the second wave 
cycle (with MacCormack) when the wave front is steep, but not yet fully shocked; 
(2) the percentage of energy (or power spectral density) contained in the fundamen- 
tal mode is higher, and the excessive high energy in the higher modes is somewhat 
lower with the Lax-Wendroff and Rubin and Burstein schemes. 

All of the earlier methods, i.e., MacCormack, Lax-Wendroff, and Rubin and 
Burstein, were utilized without adding artificial viscosity. The addition of an 
artificial viscosity term to a numerical scheme was conceived as a way to damp 
post-shock oscillations. Artificial viscosity does reduce post-shock oscillations, but 



NONLINEAR HYPERBOLIC EQUATIONS 13 

0 10 20 30 40 50 60 

NONDIMENSIONAL TIME 

FIG. 4. Time evolution of normalized pressure oscillations at an end of the chamber (Hyman, 
6 = 1.0). 

at the expense of the higher harmonic components of the waveform. The effect of 
artificial viscosity on the solution over many wave cycles was explored using 
Hyman’s predictor-corrector scheme (as described by Sod [22]). This technique 
demonstrated poor results for the shock tube tests and was utilized here only to 
demonstrate the effect of varying the amount of energy dissipated through artificial 
viscosity. Results obtained utilizing this method with a high value of artificial 
viscosity (S equal unity in Hyman’s method) indicate that high artificial viscosity 
prevents a shock from ever forming and the deviations from a perfect sine wave are 
never large (as shown in Fig. 4). Spectral analysis of this solution shows a complete 
absence of higher harmonic content. Initially, only the first three harmonics are 
excited while at a nondimensional time of 60, 99 % of the energy is contained in the 
fundamental mode. Reducing the artificial viscosity coefficient (6 = 0.3, the lowest 
value at which Hyman’s method remains stable) yields a much steeper waveform, 
but one whose higher harmonic content is still less than it should be (as shown in 

0.20 
z 
E! 

5 
s 0.10 
z 
L 
:: 
2 0.00 
z 
E 

z 
2 -0.10 

2 
a 
z 

-0.20 

b IO 20 30 40 50 60 

NONOIMENSIONAL TIME 

FIG. 5. Time evolution of normalized pressure oscillations at an end of the chamber (Hyman, 
6=0.3). 



14 BAUM AND LEVINE 

O 10 20 a 30 40 50 60 
NONOlMENSlONAL TIME 

0.30 

b ’ IO 20 30 40 50 60 

NONOIhlENSIONAL TIME 

0.20 
r 
0 
2 
z 
z 0.10 

i! 
e’ 
2 0.00 
s 
E 
9 
N 
2 

-0.10 

f 
s 

-0.20 

0 IO 20 30 40 50 60 
C NONDlMENSlONALTlhlE 

FIG. 6. (a) Time evolution of normalized pressure oscillations at an end of the chamber, Rusanov, 
w= C,=O.S. (b) Rusanov, C,=O.8, w=O.888. (c) Rusanov, C,=O.8, o= 1.16.(d) Rusanov+ACM, 
C, = 0.85, co = 1.0. 



NONLINEAR HYPERBOLIC EQUATIONS 15 

z 
ii 0.30 
z 
2 
5 0.20 
0 
r 
: 0.10 
I 
e 
5 0.00 

N 
2 
P -0.10 

z 

-0.20 

d ’ 10 20 30 40 50 60 

NONOlMENSlONAL TIME 

FIG. k-continued 

Fig. 5). Initially, fifteen harmonics are excited, but only the first six harmonics 
remain excited after 30 wave cycles. As time increases, the action of artificial 
viscosity continues to preferentially damp the higher harmonics causing the 
solution to further degenerate. 

Another scheme that utilizes artificial viscosity to damp pre- and post-shock 
oscillations is the first-order scheme of Rusanov. The results obtained by applying 
this scheme are strongly dependent on the ratio of o/C, where C, < 1 and w is the 
artificial viscosity coefficient. Figure 6a shows the results of applying this scheme 
with o/C, = 1, where C, = o = 0.8. A wiggle appears in the solution after the shock 
formation. Nevertheless, due to energy dissipation by artilicial viscosity, the wiggle 
does not develop into a set of discrete humps. The spectral analysis of this case 
shows that initially as many as 18 harmonics are excited, with erroneous energy 
contained in the twelfth to fifteenth harmonics. Closer to the end of the run the 
excessive energy has propagated to the seventh harmonic and energy contained in 
the twelfth and up harmonics had been totally dissipated. 

Figure 6b shows the results of applying Rusanov’s scheme with o/C, = 1.111, 
where C, = 0.8. The first post-shock wiggle appears after 4 wave cycles. At the non- 
dimensional time interval of 40 to 60, there are no wiggles present and the 
waveform, although steep, is not in the shocked state. The spectral analysis of this 
case indicates that initially there is very little excessive energy in the 11 th and 12th 
modes, while up to 17 modes are excited. As time progresses, artificial viscosity con- 
tinuously dissipates the energy in the higher modes until finally, at the nondimen- 
sional time interval of 50-60, only 8 modes are excited. 

Figure 6c shows the results of applying Rusanov’s scheme with an o/C, ratio of 
1.45, and C, = 0.8 Excessive energy dissipation through artificial viscosity prevents 
the shock from ever forming and the deviations from a perfect sine wave are just 
slight. Spectral analysis of this case indicates that initially only the first ten har- 
monics are excited, while after the nondimensional time of 22, only the first one is 
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excited. The amplitude values reached by the waveforms at the nondimensional 
time of 60 as a function of o/C, were tabulated. Analysis of these results indicates 
that the amplitude is inversely proportional to the ratio w/C, to the power of 
2.2163. It is concluded that by line tuning the ratio of w/C, (possibly in the region 
1.11 < o/C, < 1.25) it is possible to achieve optimum steepening without generating 
wiggles. Nevertheless, since the spectral analysis of even the best solution (with 
o/C, of 1.111) indicates excessive damping of energy contained in the high modes 
by the use of artificial viscosity, this optimum solution cannot be as good as the 
solution obtained by the FCT or ACM type schemes (as will be shown later) that 
preserve the high frequency content of the waveform. In this connection it should be 
noted that Sod [22] has shown that results obtained for the shock tube problem 
with C, = 0.9, w = 1.0, and o/C, = 1.111 are quite poor and that the addition of 
artificial compression resulted in great improvement. Figure 6d shows the results 
for a similar test (Rusanov and ACM) with C,=O.85, o = 1.0, and w/C, = 1.17. 
This ratio was chosen in accordance with the above study (i.e., optimum region of 
operation). A wiggle that appeared in the solution after shock formation dis- 
appeared at later times, as was the case with the Rusanov scheme itself. The 
waveforms between nondimensional times 50 and 60 are significantly steeper than 
with Rusanov’s scheme without artificial compression. The spectral analysis data 
indicates that the addition of ACM resulted in the initial excitation of more higher 
harmonics (25 modes were excited with ACM compared to 17 without ACM). In 
addition, despite energy dissipation from the higher modes due to artificial 
viscosity, the first 20 harmonics are still excited towards the end of the test, 
resulting in a steeper waveform. 

Monotone schemes are known [23] to capture shocks without overshoots and to 
yield the correct shock location. Unfortunately, linear monotone schemes are only 
first-order accurate. An improvement suggested by Harten and Zwas [14] was to 
form a hybrid difference operator which combines the classical second-order Lax- 
Wendroff [21] scheme with a first-order monotonic scheme. The first-order 
monotonic scheme is activated only in the vicinity of admissible discontinuities 
while the second-order scheme is applied to the smooth portion of the flow. 
Nevertheless, it is recognized that the first-order accurate monotone scheme 
produces excessive smoothing of the shock (i.e., excessive energy in the low fre- 
quency modes). 

The results obtained utilizing this hybrid scheme are shown in Fig. 7. Figure 7a 
shows the time evolution of pressure oscillations between nondimensional times 0 
and 60. It is shown that a shock is formed after 3 wave cycles, and that the 
waveform remains steep throughout the duration of the solution. The spectral 
analysis data indicates that initially the first 25 harmonics are excited, while 
towards the end of the test, only the first 8 harmonics remain excited. The time 
variation of the accumulative percentage of Power Spectral Density contained in 
the respective harmonics for this scheme (shown in Fig. 7b) indicates that there are 
no erroneous shifts of energy among the high-order modes. Nonetheless, since the 
scheme is based upon transfer to a linear (first-order accuracy) scheme at shock 



NONLINEAR HYPERBOLIC EQUATIONS 17 

0.20 

-0.20 

0 IO 20 30 40 50 60 

a NONOIMENSIONAL TIME 

100 - 

90 - 

iz - 
t 

I 
2 go- 

5 
P 
z 

70 - 

60 - 

0 10-20 

A 30-40 

0 45-55 

I 
I I I I I I I I I I I I 1 1 

b 
1 3 5 7 9 II 13 

HARMONIC 

FIG. 7. (a) Time evolution of normalized pressure oscillations at an end of the chamber 
(Hybrid). (b) Time evolution of the accumulative percentage of PSD. 

transitions and contact discontinuities, the lower harmonics contain more energy 
than should have actually been there (for instance, the fundamental mode contains 
70 % of the total energy), and the energy in the higher modes has been excessively 
dissipated (99.3 % of the total energy that was initially contained in the first 15 har- 
monics is finally contained in the first 6 harmonics). 

Figure 7c shows the dependence of the accumulative PSD upon Courant number 
and the number of grid points. It is shown that dissipation of energy due to dif- 
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Expanded view of the normalized pressure oscillations at the end of the chamber.(Hybrid, 93 grid 
points). 

fusive errors increases significantly as Courant number decreases (as shown by the 
increase of energy contained in the lower harmonics). Conversely (as should be 
expected, due to the first-order accuracy of the monotonic scheme), it is shown that 
the energy dissipation due to diffusive errors decrease with increase in the number 
of mesh points. With 93 points, at least 18 harmonics remain excited toward the 
end of the test. An expanded view of the time evolution of pressure oscillations 
between nondimensional times 50 to 60 (obtained with 93 mesh points) is shown in 
Fig. 7d. Excellent shock resolution is demonstrated. In this connection it should be 
mentioned that the excellent shock resolution obtained with 93 mesh points, com- 
bined with a significantly reduced high frequency energy dissipation that is expected 
with 93 mesh points (as compared to 51 points) indicates that the solution obtained 
with 93 mesh points, specifically energy content in the fundamental mode 
(approximately 65 % of the total energy) is a better approximation of the exact 
solution. Indeed, the energy distribution among modes obtained with 93 points is 
very similar to the energy distribution obtained with the FCT schemes and the 
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combination scheme of Lax-Wendroff, Hybrid, and Artificial Compression Method 
(as will be presented later). 

The first of the Flux Corrected Transport (FCT) Schemes tested was the FCT- 
SHASTA Phoenical modification of the Lax-Wendroff scheme, developed by Book, 
Boris, and Hain [17]. This method combines the two-step Lax-Wendroff scheme 
with antidiffusive correctors that contain higher order terms which are subject to a 
limiting routine in order to preserve the monotonicity of the provisional results 
(this combination is termed here FCT-LW). Following Sod [22], the variable 
diffusion/antidiffusion coefficient q was set to 0.125. 

Figure 8a shows the time evolution of pressure oscillations at an end of the tube 
between nondimensional times 0 and 60. The expanded view of the pressure 
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oscillations between nondimensional times 20 to 30 and 50 to 60 are shown in 
Figs. 8b and c, respectively. It is shown that the small initial pre-shock error 
develops with time into a pre-shock wiggle. Moreover, there is an observed cur- 
vature in the center of the expansion wave, instead of the anticipated straight line. 
The shock itself is captured over 4 grid points, even after 5260 time steps (30 wave 
cycles). 

The time variation of the accumulative power spectral density as a function of the 
respective harmonics indicates that after the shock formation, there is a slight 
decrease in the percentage of energy contained in the fundamental mode and a 
slight increase in the percentage of energy contained in the second to tenth har- 
monics, while the percentage of energy contained in the high harmonics (above ten) 
has somewhat diminished. In addition, this data shows that there is initially some 
excessive energy in the eighth and ninth harmonics that propagates (with time) to 
the seventh and eighth harmonics. In this connection it should be mentioned that 
variations of the energy content above the seventh harmonic are within a quarter of 
a percent, which is within the error limitations of the spectral analysis program. 

Overall, the FCT-SHASTA Phoenical scheme yielded very good results for these 
test conditions. However, when this scheme was utilized to solve the same problem 
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with initial disturbances of higher amplitudes (0.4 and 0.6 of the mean pressure 
instead of 0.2) the scheme yielded erroneous results. Figures 8d and e show the 
expanded views of the time evolution of calculated pressure oscillations between 
nondimensional times 20 to 30 and 50 to 60, respectively, in response to a fun- 
damental mode disturbance with an amplitude equal to 40 % of the steady 
pressure. Figures 8f and g show the time evolution of pressure oscillations between 
nondimensional times 20 to 30 and 50 to 60, respectively, for an initial disturbance 
with an amplitude equal to 60 % of the steady pressure. These figures show the 
development of a small “imperfection” at the center of the expansion wave to either 
a wiggle (for the lower amplitude disturbance) or, for the higher amplitude distur- 
bances, to a second shock. Analysis of the spectral data indicates only minor 
changes in the energy distribution among the modes as a function of time, such as a 
slight increase of energy contained in the fundamental mode and slight energy 
decrease in the higher harmonics. These minor changes presumably cause the dis- 
tortion observed in the waveform. 

Figures 8h and i show expanded views of pressure oscillations between non- 
dimensional times 20 to 30 and 50 to 60, respectively, obtained with a Courant 
number of 0.6, 93 grid points, and an initial disturbance amplitude of 40 % of the 
steady pressure. A comparison with results obtained with the same initial distur- 
bance amplitude for the standard test case (i.e., C, = 0.6, 51 grid points) indicates 
that both solutions have a curved expansion instead of the straight line expected 
from the analytical solution of an N wave. However, the solution obtained with 93 
grid points indicates that a numerically induced shock is formed at the center of the 
expansion wave. The steepening process of an initial error into a second “shock” 
wave is of great interest. The initial slight “wiggle” is treated by the numerical 
scheme as an adverse density gradient (or as a compression wave) and thus it acts 
to steepen it. The density gradient increases until il becomes large enough to be 
treated by the numerical scheme as an “admissible” discontinuity. This process of 
“artificial steepening” is very similar to the steepening process observed when utiliz- 
ing a numerical combination scheme that incorporated artificial compression. The 
addition of artificial compression was conceived as a way to steepen shock tran- 
sitions that were smeared by the first-order monotonic schemes. Unfortunately, 
most of these combination schemes treat any arbitrary disturbance with a high 
enough density gradient value as a shock and will steepen it. 

The FCT-SHASTA Phoenical Lax-Wendroff scheme was also tested with 
Courant numbers of 0.3 and 0.85. With a Courant number of 0.85 the initial single 
pre-shock wiggle develops into a series of wiggles (as shown in Fig. 8j). In contrast, 
the results with C, = 0.3 indicate no pre-shock wiggle; rather, a post-shock wiggle 
appears in the solution (Fig. 8k). 

In conclusion, it has been shown that the FCT-SHASTA Phoenical Lax- 
Wendroff scheme yields very good results for low amplitude disturbances, but yields 
erroneous results for high amplitude disturbances, when calculated over many wave 
cycles. 

The second of the Flux Corrected Transport schemes tested was the FCT- 
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SHASTA Phoenical Low Phase Error scheme [IS] (FCT-LPE). This scheme 
minimizes phase errors (i.e., dispersive errors) instead of minimizing diffusive errors. 
The rationale for this modification is that diffusive errors generally affect the high 
frequency content (i.e., short wavelength) rather than the low frequency content 
(i.e., long wavelength). Since the high frequency modes usually also suffer the most 
dispersive errors, damping of these modes may actually reduce the overall error. 
The importance of reducing phase errors is enhanced when the velocity is 
predominantly in one direction (as happens in a rocket motor). For the square 
wave test case [18], this scheme demonstrated the best results of all the FCT- 
SHASTA explicit schemes developed to that date. 

Figure 9a shows the time evolution of the oscillatory pressure amplitude at an 
end of the tube obtained by utilizing this scheme. The expanded view of pressure 
oscillations between nondimensional times 50 to 60 (shown in Fig. 9b) indicates 
that the initial pre-shock error develops in time into a pre-shock wiggle. It should 
be noticed that the initial shock-rarefaction transition is not sharp, but rather 
rounded and becomes even more rounded with time, indicating damping of energy 
contained in the high harmonics. An analysis of the spectral data indicates that the 
percentage of energy in the fundamental mode is higher than with the FCT-LW 
scheme, and that the second through eighth harmonics have slightly less energy; 
less modes are initially excited than with the FCT-LW scheme; the attenuation of 
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FIG. 9. (a) Time evolution of normalized pressure oscillations at an end of the chamber 
(FCT-LPE). (b), (c) Expanded views of the normalized pressure oscillations at an end of the chamber 
(FCT-LPE): (b) 51 grid points. (c) 93 grid points. 
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energy in the higher modes is faster; and that the energy in some higher modes 
(thirteen and above) had actually been dissipated altogether. 

The results obtained by utilizing this scheme to solve the same test problem with 
higher initial pressure disturbance amplitudes (0.4 and 0.6 of the steady pressure) 
are very similar to those obtained with the FCT-LW scheme, except for the 
addition of a pre-shock wiggle. Similar conclusions are drawn with respect to the 
results obtained with lower Courant numbers (and 51 grid points) or with 93 grid 
points (and C, =0.6). Instead of the expected improvement that should have 
resulted from reducing the spatial mesh size, the results for this test case (93 grids, 
C, = 0.6, Ap = 0.2P), shown in Fig. 9c, indicate significant errors developing along 
the rarefaction wave. In conclusion, it seems that for this specific application and 
this test case conditions, the results obtained by this scheme are actually worse than 
the results obtained by the FCT-LW. 

The last scheme tested was a combination of the Artificial Compression Method 
[20] with the Hybrid [ 131 and the Lax-Wendroff schemes [21]. This combination 
method involves two steps: in the first step the second-order Lax-Wendroff scheme 
is hybridized with the nonoscillatory first-order accurate method, as described 
previously, to allow a monotonic (i.e., nonoscillatory) transition across admissible 
discontinuities. In the second step, an artificial compression correction is applied to 
sharpen transitions of discontinuities (i.e., restore the energy contained in the high 
frequency modes), since the hybridized first-order accurate method is too dis- 
sipative. A switch value based upon flow gradients (density gradients were used 
herein) is utilized so that the artificial compression and the first-order monotonic 
schemes are activated only in the immediate vicinity of admissible discontinuities. 
This combined method preserves the second-order truncation error of the Lax- 
Wendroff scheme in smooth regions of the flow and yet has the potential to yield 
nonoscillatory transitions of both shocks and contact discontinuities (due to the 
monotone scheme that is activated at the transition regions). In this connection, it 
should be mentioned that this combined scheme is limited to Courant numbers 
below 0.85. 

Figure 10a shows the time evolution of pressure oscillations at an end of the tube 
between the nondimensional times of 0 and 60, obtained by utilizing the 
LW + H +ACM scheme, with a switch value of 0.0002. The expanded views 
between nondimensional times 20 to 30 and 50 to 60 are shown in Figs. lob and c, 
respectively. No erroneous wiggles or oscillations are excited at any time before or 
after the shock, while 95 % of the shock amplitude is captured over three grid 
points, even after several thousand time steps. The spectral analysis for this case 
indicates that (similarly to what has been shown with the FCT-SHASTA Phoenical 
scheme) the percentage of energy in the fourth to eighth harmonics grows slightly 
with time. However, in this case, this growth is not accompanied by dissipation of 
energy in the higher (above eighth) harmonics, but rather by a slight decrease in 
the percentage of energy contained in the first to third harmonics. The time 
evolution of the power spectral density as a function of mode number (shown in 
Fig. 10d) indicates that once a shock is formed, energy distribution among the 
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FIG. 10. (a) Time evolution of normalized pressure oscillations at an end of the chamber 
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FIG. 10. (f) Spatial evolution of pressure waves in the chamber initiated by the piston pulser. (g) 
Piston pulser: PSD as a function of frequency. 

modes varies little with time. The results are in excellent agreement with the 
analytical solution for an N wave. 

The switch value responsible for the transition from the Lax-Wendroff to the 
Hybrid + ACM combination was chosen to be 0.0002. To demonstrate that the 
choice of switch is not limited to a very narrow ran&e, the test was repeated with 
switch values of 0.002 and 0.00005. The results obtained in all these tests were vir- 
tually identical, indicating the insensitivity of the results to variations in the switch 
value (within a reasonable range). 

Results obtained with an initial pressure disturbance amplitude of 0.6 of the mean 
pressure are indistinguishable (qualitatively) from results obtained for the standard 
test case (i.e., an undistorted N wave). Results obtained at low Courant numbers 
(around 0.3) show increased dissipation of the high harmonic content (a problem 
inherent to the basic Lax-Wendroff scheme) that results in rounding of the shock 
top. Nevertheless, 95 % of the shock is still captured between three grid points. 

In contrast to the results obtained with the FCT schemes, excellent results are 
obtained with 93 grid points (C, = 0.6, dp, = 0.6P), as shown in Fig. 1Oe. The 
shock remains sharp and oscillation-free (even after close to 10,000 time steps). 
Spectral analysis data indicated that at least 25 harmonics were excited at all times. 
In addition, no detectable temporal change was observed in the percentage of 
energy contained in any of the harmonics. 

An additional testimony to the shock capturing capability of the Lax-Wendroff, 
Hybrid, and Artificial Compression combination schemes is shown in Figs. 10f and 
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g. Experiments were conducted (more details are given in [35]) in which closed 
tubes filled with nitrogen at room temperature were pulsed by a piston pulser 
attached at one end. The pressure oscillations in the chamber excited by the piston 
pulser featured a very fast rise and decay. The nonlinear combustion instability 
program was modified to model the time evolution of pressure oscillation in the 
chamber. The predicted spatial evolution of pressure waves in the lirst half wave 
period is shown in Fig. 1Of. The very fast rise and decay times of the pulse resulted 
in a very narrow steep-fronted and steep-backed wave. The spectral analysis results 
of this pressure wave solution (shown in Fig. log) indicated an almost linear decay 
of energy as a function of frequency; a result significantly different from spectral 
analysis results obtained for an N-type waveform. The prediction of such waveforms 
in a sharp, nonoscillatory manner is a formidable test for any numerical shock cap- 
turing scheme. The ability of the LW + H + ACM combination scheme to 
reproduce these waves with only a slight post-expansion oscillation is another 
indication of the excellence of this shock capturing technique for all types of wave 
propagation problems. 

CONCLUSIONS 

Several shock capturing techniques were utilized to solve the nonlinear hyper- 
bolic equations describing propagation of finite amplitude waves, wave steepening, 
and shock formation and propagation in a closed-end tube for many wave cycles. A 
spectral analysis capability was incorporated in the program, enhancing the ability 
to examine the dissipative and dispersive error pattern of the candidate numerical 
shock capturing schemes. 

All of the “older” techniques tested (i.e., MacCormack, Lax and Wendroff, and 
Rubin and Burstein) demonstrated significant diffusive and dispersive errors. The 
results of an extensive study conducted with MacCormack’s scheme demonstrated 
that (a) dispersive errors increase with decrease of Courant number; (b) dissipative 
errors increase with increase in Courant number from 0.1 to 0.6 and then decrease; 
and (c) both dispersive and dissipative errors increase with frequency (for the same 
Courant number). These results agreed with results obtained by a linear error 
analysis. Except for some insignificant differences, the results obtained for the Lax- 
Wendroff and Rubin and Burstein schemes were similar. 

Artificial viscosity effects were examined by combining artificial viscosity with 
Hyman’s predictor-corrector and Rusanov’s schemes. The use of artificial viscosity 
was conceived as a way to damp post-shock oscillations (erroneous energy content 
in the high frequency modes). However, using artificial viscosity for several wave 
cycles resulted in total dissipation of the energy contained in the high frequency 
modes. It has been demonstrated (with both schemes) that the total energy loss 
depends on the value of the artificial viscosity coefficient used; increasing the 
artificial viscosity coefficient resulted in a faster transition to a pure sinusoidal wave 
(i.e., elimination of the high frequency modes) and a faster wave amplitude decay. 
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Numerical experiments with the Flux-Corrected-Transport-SHASTA schemes 
tested demonstrated very good results (except for some aesthetic pre- or post-shock 
wiggles) for the standard test case. Nevertheless, these schemes yielded erroneous 
solutions when tested for high initial amplitude disturbances; solutions that 
exhibited a single or even multiple numerically generated shocks at the center of the 
rarefaction wave. 

The Hybrid scheme utilizes a first-order accurate monotonic scheme in the 
vicinity of admissible discontinuities and a second-order scheme in the smooth por- 
tion of the solution. Results obtained with this scheme indicated that for all 
Courant numbers, grid sizes, and initial wave amplitudes, tested shocks are cap- 
tured without oscillations. Nevertheless, since the scheme is based upon a transition 
to a linear (first-order accurate) scheme at shock transitions, the lower harmonics 
contain more energy than should be there at the expense of the high frequency con- 
tent of the wave. This energy transition resulted in (after many wave cycles) 
waveforms that are not fully shocked. 

Artificial Compression, when combined with the Hybrid scheme, was conceived 
as a way to restore the high frequency content of the wave. Results obtained by 
utilizing this combination scheme for several Courant numbers, initial amplitudes, 
and grid sizes, indicated that (a) shocks are captured in a sharp, nonoscillatory 
manner over three grid points, even after several thousand time steps; (b) no 
significant shift of energy among modes has been observed after the process of wave 
steepening has been completed; (c) energy distribution among modes corresponds 
very closely to the analytical solution (i.e., that of an N wave); and (d) the solution 
is not very sensitive to the value of the switch utilized. 

Since the time the study was performed, a new class of Total Variation 
Diminishing (TVD) schemes had been developed [36-381. These are high 
resolution (second-order accurate, explicit or implicit) upwind schemes. These 
schemes can be shown, by vigorous mathematical analysis, to satisfy the property of 
monotonicity preservation. Some of these methods also guarantee strict satisfaction 
of the entropy condition (i.e., no expansion shocks). The application of some of 
these techniques to the test problem described in this paper will be described in 
future reports. 

REFERENCES 

1. J. N. LEVINE AND F. E. C. CULICK, “Nonlinear Analysis of Solid Rocket Combustion Instability,” 
Air Force Rocket Propulsion Laboratory Report, AFRPL-TR-74-75, 1974. 

2. G. ZWAS AND J. ROSEMAN, J. Comput. Phys. 12 (1973), 179. 
3. M. D. SALAS, “On the Anatomy of Floating Shock Fitting, AIAA Second Computational Fluid 

Dynamic Conference,” pp. 47-54, 1975. 
4. G. MORETTI, “The Choice of a Time-Dependent Technique in Gas Dynamics,” Polytechnic Institute 

of Brooklyn Report, PIBAL 69-26, 1969. 
5. G. MOREZTTI, “A Critical Analysis of Numerical Techniques: The Piston-Driven Inviscid Flow,” 

Polytechnic Institute of Brooklyn Report, PIBAL 69-25, 1969. 



28 BAUM AND LEVINE 

6. G. MORETTI, Comput. Fluids 17 (1979), 191. 
7. S. R. CHAKRAVARTHY, D. A. ANDERSON, AND D. SALAS, AIAA Paper 80-0268, 1980. 
8. M. B. CARVER, J. Comput. Phys. 35 (1980), 57. 
9. R. D. RICHTMVER AND K. W. MORTON, “Difference Methods for Initial Value Problems,” 

Interscience, New York, 1967. 
10. A. HARTEN, J. M. HYMAN, AND P. D. LAX, Commun. Pure Appl. Math. 29 (1976), 292. 
11. R. W. MACCORMACK AND A. J. PAULLAY, Compur. Fluids 2 (1974), 339. 
12. A. MAJDA AND S. A. OSHER, Numer. Math. 30 (1973), 429. 
13. A. HARTEN AND G. ZWAS, J. Comput. Phys. 9 (1972), 568. 
14. A. HARTEN AND G. ZWAS, J. Engineering Math. 6 (1972), 207. 
15. B. VAN LEER, J. Comput. Phys. 23 (1977), 296. 
16. A. J. CHORIN, J. Comput. Phys. 22 (1976), 517. 
17. D. L. BOOK, J. P. BORIS, AND K. HAIN, J. Comput. Phys. 20 (1975), 248. 
18. J. P. BORIS AND D. L. BOOK, J. Comput. Phys. 20 (1976), 397. 
19. A. HARTEN, Commun. Pure Appl. Math. 30 (1977), 611. 
20. A. HARTEN, “The Artificial Compression Method for Computation of Shocks and Contact Discon- 

tinuities: III. Self Adjusting Hybrid Schemes,” Courant Institute of Mathematical Sciences Report 
IMM-415, 1977. 

21. P. D. LAX AND B. WENDROFF, Commun. Pure Appl. Math. 13 (1960), 217. 
22. G. A. SOD, J. Comput. Phys. 27 (1978), 1. 
23. E. TURKEL, “Numerical Methods for Large-Scale, Time Dependent Partial Differential Equations,” 

Institute for Computer Applications in Science and Engineering, ICASE-79-20, 1979. 
24. P. COLELLA, “An Analysis of the Effect of Operator Splitting and of the Sampling Procedure on the 

Accuracy of Glimm’s Method,” Ph.D. thesis, University of California, Berkeley, 1978. 
25. G. A. SOD, in “Computation Fluid Dynamics with Stochastic Techniques,” Von Karman Institute 

for Fluid Dynamics, Lecture Series on Computational Fluid Dynamics, March, 1980. 
26. S. K. GODUNOV, Mat. Sb. 47 (1959) 271. 
27. R. F. WARMING AND R. M. BEAM, AIAA J. 14 (1976), 1241. 
28. J. L. STEGER AND R. F. WARMING, “Flux Vector Splitting of the Inviscid Equations with Application 

to Finite Difference Methods,” NASA-TM-78605, 1979. 
29. R. W. MACCORMACK, in “Proceedings of the Second International Conference on Numerical 

Methods in Fluid Dynamics” (M. Holt, Ed.), Lecture Notes in Physics No. 8, Springer-Verlag, New 
York/Berlin, 1971. 

30. B. VAN LEER, J. Comput. Phys. 35 (1980), 57. 
31. B. VAN LEER, J. Comput. Phys. 32 (1979), 101. 
32. V. V. RUSANOV, U.S.S.R., Comput. Math. and Math. Phys. No. 2 (1962). 
33. E. L. RUBIN AND S. Z. BURSTEIN, J. Comput. Phys. 2 (1967), 178. 
34. P. M. MORSE AND K. V. INGARD, “Theoretical Acoustics,” McGraw-Hill, New York, 1968. 
35. J. D. BAUM, R. L. LOVINE, AND J. N. LEVINE, J. Spacecraft Rockets 20, No. 2 (1983), p. 150. 
36. P. L. ROE, J. Comput. Phys. 43 (1981), 357. 
37. A. HARTEN, J. Compur. Phys. 45 (1983), 351. 
38. S. R. CHAKRAVARTHY AND S. OSHER, in “Proceedings of the AIAA 6th Computational Fluid 

Dynamics Conference, Danvers, Mass., 1983.” 


